

Covariance matrix

- Single signal: $y = A \cdot s + n$
 - A signal amplitude
 - s signal vector
 - n noise
- Covariance, 1 signal:
 - $-\mathbf{R} = \sigma_{n}^{2}\mathbf{I} + A^{2}\mathbf{e} \cdot \mathbf{e}'$
 - Eigenvalues: σ_n^2 (x M-1), $\sigma_n^2 + MA^2$
 - Largest eigenvector $\mathbf{v} = \mathbf{M}^{0.5} \mathbf{s}$ (signal vector)
 - Known array geometry ⇒ find direction and amplitude

2010.05.00

2 incoherent signals

- Two incoherent signals:
 - $-\mathbf{R} = \sigma_{n}^{2} \mathbf{I} + A_{1}^{2} e_{1} \cdot e_{1}' + A_{2}^{2} e_{2} \cdot e_{2}'$
 - The signal vectors, $S=[e_1 e_2]$ are linearly indep. for different directions (and properly sampled array)
 - Noise subspace: M-2 noise eigen-values/vectors
 - Signal+noise subspace: 2 orthogonal eigenvectors $\mathbf{V}_{s+n} = [v_1, v_2]$ (Hermitian matrix)
 - Span a subspace that contains s_1 and s_2 : V_{s+n} **T** = **S**,

2010.05-06 T = transf. matrix (unique, may be hard to find)

Multiple signals

- Multiple signals:
 - $-R = K_n + SCS'$
 - C is intersignal coherence
- Examples:
 - Spatially white noise: $K_n = \sigma_n^2 I$
 - Two incoherent signals: $\mathbf{C} = \text{diag}(A_1^2, A_2^2) \text{diagonal matrix}$

2010.05.06

Coherent signals

• Two perfectly coherent signals:

$$C = \begin{bmatrix} A^2 & -A^2 \\ -A^2 & A^2 \end{bmatrix}$$

Resulting covariance matrix:

- $\mathbf{R} = \mathbf{K_n} + \mathbf{SCS'} = \sigma_n^2 \mathbf{I} + A^2 [e_1 e_2] \cdot [e_1 e_2]$
 - M-1 eigenvalues of size σ_{n}^{2} , one of size $\sigma_{n}^{2}+MA^{2}$
 - New eigenvector, but as signal vectors s are linearly independent, a linear combination of them is not a new signal
 - The new eigenvector is related to the signal vectors, but does not correspond to a physical direction, θ

- Cannot find T from $V_{s+n} T = S$

2010.05.06

Coherent signals and spatial smoothing

- Spatial smoothing
- Compromise between
 - ... smoothing to avoid the effect of coherent signals
 - ... and loss of resolution due to subaperture smaller than physical aperture

2010.05.06

Robustness

- The more "tuned" an algorithm is, the more sensitive it is to deviations from assumptions
- Assumed form of the signal vector implies perfect knowledge of:
 - Sensor positions
 - Sensor gains
 - Sensor phase
 - · changes if speed of propagation in medium is incorrect

2010.05.06

Robust Constrained Optimization

- Minimum variance beamforming:
 - 1. Minimize w'Rw with respect to w
 - 2. Subject to **e'w** = 1 unity gain, desired direction
- Robustness criterion 1:
 - 2. Subject to $(e+\delta)'w = 1$ and $|\delta|^2 \le \varepsilon^2$
 - δ represents errors in signal vector
- Robustness criterion 2:
 - 2. Subject to **e'w** = 1 and $|w|^2 \le \beta^2$
 - β represents a limit on the weight vector's norm
 - Not directly related to robustness, but ...

Robust Constrained Optimization

- Both cases ⇒ add a scaled identity matrix to covariance estimate: R → R + ε I
 - ⇔ Regularization in linear algebra
 - − ⇔ Diagonal loading in array processing
- Value of ε depends on criterion and is signal dependent
 - Du, Yardibi, Li, Stoica, Review of user parameter-free robust adaptive beamforming algorithms, Digital Signal Processing, 2009
- **9**₁0**S**imple solution used by us: $ε = δ \cdot tr{R}/L$, L= sub. ap

